($\alpha \mathrm{Me}$)Hyv: chemo-enzymatic synthesis, and preparation and preferred conformation of model depsipeptides \dagger

Cristina Peggion, ${ }^{a}$ Alessandra Barazza, ${ }^{a}$ Fernando Formaggio, ${ }^{a}$ Marco Crisma, ${ }^{a}$ Claudio Toniolo, ${ }^{* a}$ Marzia Villa, ${ }^{b}$ Claudia Tomasini, ${ }^{b}$ Herbert Mayrhofer, ${ }^{c}$ Peter Pöchlauer, ${ }^{c}$ Bernard Kaptein ${ }^{d}$ and Quirinus B. Broxterman ${ }^{d}$
${ }^{a}$ Biopolymer Research Centre, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy. E-mail: claudio.toniolo@unipd.it; Fax: (+39)049-827-5239; Tel: (+39)049-827-5247
${ }^{b}$ Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy
${ }^{c}$ DSM Fine Chemicals Austria, P.O. Box 933, 4021 Linz, Austria
${ }^{d}$ DSM Fine Chemicals, Advanced Synthesis and Catalysis, P.O. Box 18, 6160 MD Geleen, The Netherlands

Received (in Cambridge, UK) 24th August 2001, Accepted 3rd January 2002
First published as an Advance Article on the web 29th January 2002

By a chemo-enzymatic approach we performed a large-scale, stereoselective synthesis of the C^{α}-methylated α-hydroxy acid $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$. We also prepared model depsipeptides based on this sterically demanding residue in combination with the α-amino acids L-Ala, L-Val, and Aib. From solution (FT-IR absorption and ${ }^{1} \mathrm{H}$ NMR) and crystal-state (X-ray diffraction) conformational analyses we found that $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ forces depsipeptides to fold into right-handed β-turn/helical structures by analogy with the reported propensity of $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Val}$, its α-amino acid counterpart.

Introduction

Increasing effort is currently being devoted to the synthesis and conformational analysis of a variety of cyclic and linear compounds characterized by the presence of α-hydroxy acids. More specifically, these compounds include oligo- and poly-esters as biodegradable and biocompatible materials, ${ }^{1-3}$ and depsipeptides and depsiproteins (in which amide and ester groups are concomitantly present in the main chain) to mimic naturallyoccurring ion carriers ${ }^{4,5}$ or to check the influence of specific H -bonds on peptide or protein bioactivity and conformation with little effect on other structural parameters. ${ }^{6-16}$

Aib

($\alpha \mathrm{Me}$) Val

Hib

($\alpha \mathrm{Me}$) Hyv

In recent years we have focused on the study of the 3Dstructure and applications of peptides based on conformationally constrained α-amino acids, in particular those characterized by C^{α}-methylation. For example, Aib (α-aminoisobutyric acid) ${ }^{17,18}$ and $(\alpha \mathrm{Me}) \operatorname{Val}\left(\mathrm{C}^{\alpha} \text {-methyl valine) }\right)^{18-22}$ are among the strongest known inducers of β-turn ${ }^{23-25}$ and $3_{10} / \alpha$-helical ${ }^{26}$ conformations. These and related C^{α}-methylated α-amino acids have been shown to represent excellent tools for the construction of rigid spacers, ${ }^{27}$ templates ${ }^{28}$ and catalysts. ${ }^{29}$ Sometime ago, we expanded the arsenal of structurally restricted building blocks by designing and synthesizing a β-bend ribbon spiral structure

[^0](a variant of the 3_{10}-helix) characterized by the (Aib-Hib) ${ }_{n}$ sequence, where Hib (α-hydroxyisobutyric acid) is the rigid, C^{α}-methylated α-hydroxy acid related to Aib. ${ }^{8,9}$

In this paper we describe a large-scale, chemo-enzymatic synthesis of L- (or S)-($\alpha \mathrm{Me}$) Hyv (C^{α}-methyl, C^{α}-hydroxyisovaleric acid or 2-hydroxy-2,3-dimethylbutanoic acid), , ${ }^{30-32}$ the α-hydroxy analogue of $(\alpha \mathrm{Me}) \mathrm{Val}$ and the second member of the family of 3D-structurally restricted, C^{α}-methylated α-hydroxy acids, the preferred conformation of which has already been investigated. We have incorporated $(\alpha \mathrm{Me}) \mathrm{Hyv}$ either in position 1 or in an internal position of a large set of depsipeptides using specific solution methods which allowed us to overcome the severe problems generated by its extreme steric bulkiness. A solution and crystal-state conformational investigation clearly showed that $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$, in analogy to its α-amino counterpart $\mathrm{L}-(\alpha \mathrm{Me})$ Val, supports right-handed β-turns and helical structures of depsipeptides.

Experimental

Chemo-enzymatic synthesis of L-((S) - α-hydroxyisovaleric acid

$13.8 \mathrm{~g}(160 \mathrm{mmol})$ of isopropyl methyl ketone were dissolved in 48 mL of methyl tert-butyl ether and the solution was cooled to $0^{\circ} \mathrm{C}$. Then, 30 mL of an aqueous HbHNL (hydroxynitrile lyase from Hevea brasilensis) enzyme solution ${ }^{32}$ (5300 units mL^{-1}) were mixed with 34 mL of water and the pH of the solution was adjusted to 4.0 . This enzyme preparation was added to the ketone solution and 7.6 g of sorbitol were added. The reaction mixture was vigorously stirred for 10 min until a stable emulsion had formed. Freshly prepared hydrogen cyanide (30 mL , 760 mmol) was added and the reaction vessel was tightly sealed. After the emulsion had been stirred for another 15 min , the reaction mixture was dissolved in 100 mL of organic solvent and 5 g of Celite were added. The mixture was stirred for 10 \min and after filtration the phases were separated. The aqueous layer was extracted twice with methyl tert-butyl ether. The combined organic phases were dried over anhydrous sodium
sulfate and the solvent was removed. The yield of the cyanohydrin was 77%. For the determination of the enantiomeric excess, a sample of the residual was analysed by gas chromatography using a $25 \mathrm{~m} \times 0.32 \mathrm{~mm}$ Chirasil-Dex-CB capillary column. The experimentally determined enantiomeric excess was 82%.
The (S)-cyanohydrin was hydrolysed using concentrated hydrochloric acid according to the literature procedure ${ }^{31}$ (yield 63%). To improve the enantiomeric excess of (S)- α-hydroxyisovaleric acid, the crude acid was crystallized as its diastereomeric salt with (S)- α-phenylethylamine using a $9: 1$ mixture of ethyl acetate-ethanol. ${ }^{30}$ The enantiomeric excess of the (S)- α-hydroxyacid was analysed by gas chromatography on its derivative 1,3 -dioxolan- 4 -one using a $25 \mathrm{~m} \times 0.32 \mathrm{~mm}$ Chirasil-Dex-CB capillary column and found to be 93%.

Details of the procedure for the most challenging depsipeptide coupling reaction are given below.

Synthesis of Boc-L-Ala-L-($\alpha \mathrm{Me}$)Hyv-OBzl

To a stirred solution of H-L-($\alpha \mathrm{Me}$)Hyv-OBzl (1.3 mmol , 287 $\mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added scandium triflate $(0.78$ $\mathrm{mmol}, 384 \mathrm{mg}$), Boc-L-Ala-OH ($3.9 \mathrm{mmol}, 738 \mathrm{mg}$) and $4-$ (dimethylamino)pyridine (DMAP) ($3.9 \mathrm{mmol}, 476 \mathrm{mg}$), and the mixture was cooled to $-10^{\circ} \mathrm{C}$ for 30 min . Then, N-ethyl-N^{\prime}-[3-(dimethylamino)propyl]carbodiimide (EDC) (3.9 mmol , 748 mg) was added and stirring was continued for 30 min . The resulting mixture was allowed to warm up to room temperature over a period of 16 h , stirred at $40^{\circ} \mathrm{C}$ for an additional 8 h and at room temperature for 40 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic layer was washed with $0.1 \mathrm{M} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$, an aqueous saturated solution of $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$ and brine $(1 \times 10$ mL), dried over sodium sulfate, and concentrated. A pure product was obtained after silica gel chromatography (a cyclohexane-ethyl acetate 95 : 5 mixture as eluant) in 75% yield (383 mg).

FT-IR absorption spectra

FT-IR absorption spectra were recorded using a Perkin-Elmer model 1720X FT-IR spectrophotometer (Norwalk, CT), nitrogen flushed, equipped with a sample-shuttle device, at $2 \mathrm{~cm}^{-1}$ nominal resolution, averaging 100 scans. Solvent (baseline) spectra were obtained under the same conditions. Cells with path lengths of $0.1,1.0$ and 10 mm (with CaF_{2} windows) were used. Spectrograde $\left[{ }^{2} \mathrm{H}\right]$ chloroform $\left(99.8 \%{ }^{2} \mathrm{H}\right)$ was purchased from Merck (Darmstadt, Germany).

${ }^{1}$ H NMR spectra

${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker model AM 400 spectrometer (Karlsruhe, Germany). Measurements were carried out in $\left[{ }^{2} \mathrm{H}\right]$ chloroform ($99.96 \%{ }^{2} \mathrm{H}$; Merck) and in [${ }^{2} \mathrm{H}_{6}$ DMSO ($\left[{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulfoxide) $\left(99.96 \%{ }^{2} \mathrm{H}_{6}\right.$; Fluka, Buchs, Switzerland) with tetramethylsilane as the internal standard.

Crystallographic data for $\mathrm{H}-\mathrm{L}-(\boldsymbol{\alpha M e}) \mathrm{Hyv}$-L-Val-OMe (OMe, methoxy)

$\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4}, M=245.3$. Monoclinic, $a=5.900(2), b=10.151(3)$, $c=12.088(3) \AA, \beta=100.64(3)^{\circ}, U=711.5(4) \AA^{3}, T=293 \mathrm{~K}$, space group $P 2_{1}, Z=2, D_{\mathrm{c}}=1.145 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.698 \mathrm{~mm}^{-1}$ $(\mathrm{Cu}-\mathrm{K} \alpha), 1179$ reflections measured, 1126 unique $\left(R_{\text {int }}=0.014\right)$ which were used in all calculations, final R value 0.043 [on $F \geq$ $4 \sigma(F)]$.

Crystallographic data for Ac-L-(aMe)Hyv-L-Val-OMe (Ac, acetyl)

$\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{4}, M=$ 287.4. Monoclinic, $a=11.287(3), b=$ $17.451(4), c=13.315(3) \AA, \beta=105.59(8)^{\circ}, U=2526(1) \AA^{3}$,
$T=293 \mathrm{~K}$, space group $P 2_{1}, Z=6, D_{\mathrm{c}}=1.133 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=$ $0.705 \mathrm{~mm}^{-1}(\mathrm{Cu}-\mathrm{K} \alpha), 4335$ reflections measured, 4158 unique ($R_{\text {int }}=0.068$) which were used in all calculations, final R value 0.064 [on $F \geq 4 \sigma(F)$].

Crystallographic data for $\mathbf{A c}-\mathrm{L}-(\mathbf{(\alpha M e}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$

$\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{8}, M=528.6$. Triclinic, $a=8.281(2), b=9.539(3), c=$ $10.417(3) \AA, a=99.18(5), \beta=96.34(4), \gamma=109.03(5)^{\circ}, U=$ $756.2(4) \AA^{3}, T=293 \mathrm{~K}$, space group $P 1, Z=1, D_{\mathrm{c}}=1.161 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu=0.714 \mathrm{~mm}^{-1}(\mathrm{Cu}-\mathrm{K} \alpha), 2258$ reflections measured, 2255 unique which were used in all calculations, final R value 0.081 [on $F \geq 4 \sigma(F)$].

Crystallographic data for Ac -(Aib) $)_{5}$-OMe

$\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{7}, M=499.6$. Monoclinic, $a=18.687(4), b=8.326(2)$, $c=19.443(4) \AA, \beta=105.99(7)^{\circ}, U=2908(1) \AA^{3}, T=293 \mathrm{~K}$, space group $P 2_{1} / n, Z=4, D_{\mathrm{c}}=1.141 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.700 \mathrm{~mm}^{-1}$ $(\mathrm{Cu}-\mathrm{K} \alpha), 5107$ reflections measured, 4306 unique ($R_{\text {int }}=0.076$) which were used in all calculations, final R value 0.083 [on $F \geq 4 \sigma(F)]$.

X-Ray crystal structure determinations

Colourless crystals $(0.4 \times 0.3 \times 0.3 \mathrm{~mm}, 0.6 \times 0.5 \times 0.4 \mathrm{~mm}$, $0.4 \times 0.3 \times 0.1 \mathrm{~mm}$ and $0.30 \times 0.15 \times 0.08 \mathrm{~mm}$, respectively) of H-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe, Ac-L-($\alpha \mathrm{Me}) \mathrm{Hyv}-\mathrm{L}-\mathrm{Val}-\mathrm{OMe}$, $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$ and $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}$ were grown from methanol solution (slow evaporation), methanol solution (slow evaporation), acetonitrile solution (slow evaporation) and a chloroform-ethyl acetate solvent mixture-petroleum ether (vapour diffusion), respectively. Data collection was performed on a Philips PW1100 four-circle diffractometer. The four structures were solved by direct methods, using the SHELXS 97^{33} program. Refinement was performed using the SHELXL 97^{34} program. H -atoms were calculated at idealized positions and refined as riding. Fractional atomic coordinates, tables of hydrogen atoms coordinates, anisotropic displacement parameters, bond lengths, bond angles, and torsion angles for the four structures are available from the Cambridge Crystallographic Data Centre. \ddagger

Results and discussion

Synthesis and characterization

L-($(S)-(\alpha \mathrm{Me}) \mathrm{Hyv}$ was produced on a large scale via acid hydrolysis of the corresponding (S)-cyanohydrin, ${ }^{31}$ which was in turn synthesized from isopropyl methyl ketone and hydrogen cyanide according to the procedure of Griengl et al. ${ }^{32}$ This chemo-enzymatic method yielded the (S)-cyanohydrin with 82% enantiomeric excess. It is evident that it is difficult for the enzyme (hydroxynitrile lyase from Hevea brasilensis, HbHNL) used in this synthetic step to clearly stereodifferentiate between the methyl and the isopropyl groups in the ketone substrate. To increase the enantiopurity to a more acceptable degree (93%), the (S)-hydroxy acid was further purified by preferential crystallisation of its diastereomeric salt with (S)- α-phenylethylamine according to the method of Mori et al. ${ }^{30}$
Peptide synthesis was performed in solution by established procedures. The Z (benzyloxycarbonyl)/OMe protected L-Val homo-oligomers (from dimer to tetramer) were prepared in 75$91 \%$ yield using $\mathrm{Z}-\mathrm{L}-\mathrm{Val}-\mathrm{OH},{ }^{35} \mathrm{H}-\mathrm{L}-\mathrm{Val}-\mathrm{OMe}^{36}$ and the EDC-1-hydroxy-1,2,3-benzotriazole (HOBt) method. ${ }^{37}$ Removal of the $\mathrm{Z} N^{a}$-protection was achieved by catalytic hydrogenation. Acetylation of $\mathrm{H}-(\mathrm{L}-\mathrm{Val})_{4}-\mathrm{OMe}$ and H -(Aib) $)_{5}-\mathrm{OMe}^{38}$ was achieved with an excess of acetic anhydride.
\ddagger CCDC reference numbers 172174-172177. See http://www.rsc.org/ suppdata/p2/b1/b107691b/ for crystallographic files in .cif or other electronic format.

The $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ residue was easily incorporated (55-89\% yield) at the N-terminus of a peptide chain, i.e. of $(\mathrm{H}-\mathrm{L}-\mathrm{Val})_{1-3^{-}}$ OMe and H -(Aib$)_{4}-\mathrm{OMe}{ }^{38}$ without protection of the α-hydroxy function, using the EDC-1-hydroxy-7-aza-1,2,3-benzotriazole (HOAt) method. ${ }^{39}$ Acetylation of the O-terminal L-($\alpha \mathrm{Me}$)Hyv residue in the depsipeptides was achieved in $55-87 \%$ yield using an excess of acetic anhydride in the presence of DMAP. ${ }^{40}$

Incorporation of an $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ residue in an internal position of the peptide chain proved to be very challenging. In our hands, all classical methods for C -activation of N^{a}-protected α-amino acids, including EDC-HOBt, ${ }^{37}$ EDC-HOAt, ${ }^{39}$ acyl fluoride ${ }^{41}$ and symmetrical anhydride (in the presence/absence of DMAP) failed. Eventually, we succeeded in the preparation of Boc-L-Ala-L-($\alpha \mathrm{Me}$)Hyv-OBzl (Boc, tert-butyloxycarbonyl; OBzl, benzyloxy) in 75% yield using Boc-L-Ala-OH ${ }^{42}$ and a recently published general procedure for acylation of hindered tertiary alcohols which involves EDC and the unique combination of catalysts scandium triflate-DMAP ${ }^{43,44}$ (see Experimental section). It is worth noting that Z-L-Ala-OH did not survive the scandium triflate treatment, affording in part Z-L-Ala-OBzl. The $\mathrm{H}-\mathrm{L}-(\mathrm{aMe}) \mathrm{Hyv}-\mathrm{OBzl}$ derivative was obtained in 95% yield from H-L-($\alpha \mathrm{Me}$) Hyv-OH and benzyl bromide in the presence of triethylamine. Selective cleavage of the C-terminal benzyl ester function of the fully protected didepsipeptide by catalytic hydrogenation proceeded smoothly. Finally, the resulting N^{α}-protected didepsipeptide free acid Boc-L-Ala-L$(\alpha \mathrm{Me}) \mathrm{Hyv}-\mathrm{OH}$ was satisfactorily coupled to $\mathrm{H}-\mathrm{L}-\mathrm{Val}-\mathrm{OMe}^{36}$ by the EDC-HOBt procedure to afford the tridepsipeptide Boc-L-Ala-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe with an internal L-($\alpha \mathrm{Me}) \mathrm{Hyv}$ residue. If lengthening of the tridepsipeptide chain from the N-terminus is required, methods are available for the selective deprotection of the Boc group in the presence of an ester from a tertiary alcohol [such as that characterizing the L-Ala-L-($\alpha \mathrm{Me}$)Hyv sequence]. ${ }^{45}$

The final compounds and intermediate sequences were obtained in a chromatographically homogeneous state and were characterized by melting point determination (if solid), polarimetry, mass spectrometry, and solid-state IR absorption (Table 1). Additional analytical data (thin-layer chromatography R_{f} values in three different solvent systems and ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR results) have been deposited as electronic supplementary information.

Solution conformational analysis

The preferred conformation adopted by the $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ containing depsipeptides was assessed in the structure supporting solvent CDCl_{3} by FT-IR absorption and ${ }^{1} \mathrm{H}$ NMR techniques. Figs. 1 and 2 illustrate the FT-IR absorption spectra in the informative N-H stretching region, while Figs. 3 and 4 show the ${ }^{1} \mathrm{H}$ NMR titrations of NH proton chemical shifts.
The FT-IR absorption curve of Ac-L- $(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{L}-\mathrm{Val})_{3}{ }^{-}$ OMe (Fig. 1) is characterized by two bands in the 3445$3425 \mathrm{~cm}^{-1}$ region (free, solvated NH groups) and one band of comparable intensity at $3385 \mathrm{~cm}^{-1}$ (weakly H-bonded NH groups) ${ }^{46,47}$ A 10 -times dilution does not alter the spectral pattern. In striking contrast, the FT-IR spectrum of the related Ac -(L-Val) $)_{4}-\mathrm{OMe}$ peptide (Fig. 1) changes dramatically from 1×10^{-3} to $1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ concentration, showing, in particular, a remarkable decrease in the intensity of the $3275 \mathrm{~cm}^{-1}$ band (associated with the extremely strongly H-bonded NH groups typical of the β-sheet conformation) with a concomitant significant increase of the band assigned to free NH groups at $3430 \mathrm{~cm}^{-1}$. From this analysis it is evident that the $\mathrm{L}-(\alpha \mathrm{Me})$ Hyv residue disrupts the strongly self-associated species formed by the L-Val homo-peptide, without being able, however, to promote a substantial folding in the molecule. Indeed, it is reasonable to associate the band at $3385 \mathrm{~cm}^{-1}$ exhibited by the $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv} / \mathrm{L}-\mathrm{Val}$ depsipeptide with intramolecularly H-bonded, fully extended (C_{5}) conformers. ${ }^{48}$

Fig. 1 FT-IR absorption spectra ($3500-3200 \mathrm{~cm}^{-1}$ region) of Ac-L$(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{L}-\mathrm{Val})_{3}-\mathrm{OMe}(\mathbf{A})$ and $\mathrm{Ac}-(\mathrm{L}-\mathrm{Val})_{4}-\mathrm{OMe}(\mathbf{B})$ in CDCl_{3} solution. Peptide concentrations: $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}(\mathbf{I})$ and 1×10^{-4} $\mathrm{mol} \mathrm{dm}{ }^{-3}$ (II).

Fig. 2 FT-IR absorption spectra ($3500-3200 \mathrm{~cm}^{-1}$ region) of Ac-L$(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}(\mathbf{A})$ and $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}(\mathbf{B})$ in CDCl_{3} solution. Peptide concentration: $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. 3 Plot of NH proton chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{L}-\mathrm{Val})_{3}-\mathrm{OMe}$ as a function of increasing percentages of DMSO (v/v) added to the CDCl_{3} solution. Peptide concentration: $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. 2 shows that a L- $(\alpha \mathrm{Me}) \mathrm{Hyv}$ residue can be hosted in an (Aib) ${ }_{n}$ homo-peptide chain without a marked perturbation of its highly folded conformation. Indeed, the intense band at 3345 cm^{-1} of Ac -(Aib) $s_{5}-\mathrm{OMe}$, typical of intramolecularly H -bonded, helical peptides, ${ }^{46,49}$ is still largely preserved in the depsipeptide analogue $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$. However, the presence of a band at $3385 \mathrm{~cm}^{-1}$ in the spectrum of the latter indicates the co-existence of fully-extended forms to some degree.

Table 1 Physical properties and analytical data for the newly synthesized derivatives and peptides

${ }^{a}$ Determined on a Leitz model Laborlux apparatus (Wetzlar, Germany). ${ }^{b}$ PE, petroleum ether bp $40-60{ }^{\circ} \mathrm{C}$; EtOAc, ethyl acetate; MeOH, methanol; DE, diethyl ether. ${ }^{c}$ Determined on a Perkin-Elmer model 241 polarimeter (Norwalk, CT) equipped with a Haake model L thermostat (Karlsruhe, Germany); $c=0.5$ (MeOH); reported in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1} .{ }^{d} c=0.5$ (TFE). ${ }^{e}$ Determined on a PerSeptive Biosystems model Mariner APITOF mass spectrometer. A $1 \% \mathrm{HCOOH}$ in a $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN} 1: 1$ solvent mixture was used for dissolving and injecting the samples. ${ }^{f}$ The reported m / z peak shows little intensity since the largest peak observed corresponds to the $[\mathrm{M}+\mathrm{H}-\mathrm{Boc}]^{+}$fragment. ${ }^{g}$ Determined in KBr pellets on a Perkin-Elmer model 580 B spectrophotometer equipped with a Perkin-Elmer model 3600 IR data station and a model 660 printer (only bands in the $3500-3200 \mathrm{~cm}^{-1}$ and $1800-1500 \mathrm{~cm}^{-1}$ regions are reported). ${ }^{h}$ Determined as a film.

Fig. 4 Plot of NH proton chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}(\mathbf{A})$ and $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}(\mathbf{B})$ as a function of increasing percentages of DMSO (v/v) added to the CDCl_{3} solution. Peptide concentration: $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

More detailed information on the conformational preferences of the $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ depsipeptides in CDCl_{3} solution was extracted from a $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR investigation (Figs. 3 and 4). The delineation of inaccessible (presumably intramolecularly H-bonded) NH groups by ${ }^{1} \mathrm{H}$ NMR was performed by
using the solvent dependence of the NH chemical shifts by adding increasing amounts of the H -bonding acceptor DMSO to the CDCl_{3} solution. ${ }^{50,51}$ Unambiguous assignments for all NH proton signals were obtained by ROESY and TOCSY experiments.

From an inspection of Fig. 3 it is clear that all three NH protons of $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{L}-\mathrm{Val})_{3}-\mathrm{OMe}$ are sensitive to the addition of DMSO, although this phenomenon is less significant for the NH^{2} proton. These results, taken together with the corresponding FT-IR absorption data, strongly support the view that the predominant 3D-structure of this tetradepsipeptide in CDCl_{3} solution is not characterized by intramolecularly H-bonded, folded forms. Rather, it is reasonable to assume that an intramolecularly H -bonded, fully extended $\left(\mathrm{C}_{5}\right)$ conformer, involving the Val^{2} residue, might in part populate the equilibrium mixture.

In both parts \mathbf{A} and \mathbf{B} of Fig. 4 two classes of NH protons were observed. Class (i) [NH^{2} proton for $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-$ (Aib) $)_{4}-\mathrm{OMe}$, and NH^{1} and NH^{2} protons for $\left.\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}\right]$ includes protons whose chemical shifts are remarkably sensitive to the addition of DMSO. Class (ii) $\left(\mathrm{NH}^{3}\right.$ to NH^{5} protons of both compounds) includes those displaying behaviour characteristic of shielded protons (extremely modest sensitivity of chemical shifts to solvent composition). These ${ }^{1} \mathrm{H}$ NMR results are in agreement with the FT-IR absorption data discussed above, allowing us to conclude that both $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}^{46,49}$
and its related depsipeptide $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$ are largely folded in a 3_{10}-helical conformation where the first two residues in the main chain are not involved in the intramolecularly H -bonded scheme.

Crystal-state conformational analysis

By X-ray diffraction we determined the molecular and crystal structures of the didepsipeptides H-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe and Ac-L-(α Me)Hyv-L-Val-OMe, the pentadepsipeptide Ac-L$(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$ and the related pentapeptide $\mathrm{Ac}-(\mathrm{Aib})_{5}{ }^{-}$ OMe. The molecular structures with the atomic numbering schemes are illustrated in Figs. 5-8. Backbone and side-chain

Fig. 5 X-Ray diffraction structure of H-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe with numbering of the atoms. The intramolecular H -bond is indicated by a dashed line.
torsion angles ${ }^{52}$ are given in Table 2. In Table 3 the intraand intermolecular H-bond parameters are listed. The X-ray diffraction structures of two other Aib homo-pentapeptides, namely Tos-(Aib) $5_{5}-\mathrm{OMe}$ (Tos, tosyl) ${ }^{53}$ and $\mathrm{Z}-(\mathrm{Aib})_{5}-\mathrm{O} t \mathrm{Bu}$ $(\mathrm{O} t \mathrm{Bu} \text {, tert-butoxy })^{54}$ have already been reported.

Bond lengths and bond angles are in general agreement with previously reported values for the geometry of the ester ${ }^{55}$ and amide ${ }^{56}$ groups, the peptide unit, ${ }^{57,58}$ and the Aib residue. ${ }^{59,60}$

In H-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe (Fig. 5) the ψ_{1} angle is close to the cis conformation, thereby preventing the occurrence of the intramolecularly H -bonded $\mathrm{O} 01-\mathrm{H} 01 \cdots \mathrm{Ol}=\mathrm{C} 1$ form (oxy-analogue of the C_{5} conformation), ${ }^{24}$ but favouring the formation of a different pseudocyclic C_{5} species involving the (peptide) $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 01$ (alcohol) intramolecular H -bond. The C-terminal Val residue is semi-extended.

The only relevant backbone difference seen among the three independent molecules in the asymmetric unit of Ac-L$(\alpha \mathrm{Me}) \mathrm{Hyv}-\mathrm{L}-\mathrm{Val}-\mathrm{OMe}$ (Fig. 6) is found in the conformation of the Val^{2} residue, right-handed (distorted) helical in molecules \mathbf{A} and \mathbf{B}, but semi-extended in molecule \mathbf{C}. In all three molecules the conformation of the $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ residue is right-handed helical.

The pentadepsipeptide $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$ is folded in a right-handed 3_{10}-helical structure ${ }^{26}$ stabilized by three $1 \longleftarrow 4$ $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ intramolecular H -bonds (Fig. 7). All $\mathrm{O} \cdots \mathrm{N}$ distances are well within the accepted range for such H bonds. ${ }^{61-63}$ Interestingly, one of the H -bond acceptors is the acetoxy ester carbonyl. The usual inversion of the handedness of the C-terminal helical residue with respect to that of the preceding ones ${ }^{64}$ is also found in this 3_{10}-helical peptide ester. Overall, the conformation adopted by the pentapeptide $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}$ (Fig. 8) strictly parallels those published for $\mathrm{Tos}-(\mathrm{Aib})_{5}-\mathrm{OMe}^{53}$ and $\mathrm{Z}-(\mathrm{Aib})_{5}-\mathrm{O} t \mathrm{Bu}^{54}$ and that discussed above for $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$. These findings are strongly in favour of the conclusion that neither the nature of the N - and C-protecting groups nor the $\mathrm{Aib} \rightarrow$ $(\alpha \mathrm{Me}) \mathrm{Hyv}$ replacement are effective in inducing a significant alteration in the global architecture of the -(Aib) 5_{5} homopeptide sequence.

Fig. 6 X-Ray diffraction structures of the three independent molecules in the asymmetric unit of Ac-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe with numbering of the atoms.

Fig. 7 X-Ray diffraction structure of Ac-L-($\alpha \mathrm{Me}$)Hyv-(Aib) $)_{4}$-OMe with numbering of the atoms. The three intramolecular H -bonds are indicated by dashed lines.

Table 2 Selected torsion angles (deg) ${ }^{52}$ for the four X-ray diffraction structures solved in this work

Torsion angle	H-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe	Ac-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe			Ac-L-($\alpha \mathrm{Me}$) $\mathrm{Hyv}-(\mathrm{Aib})_{4}$-OMe	$\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}$
		Mol. A	Mol. B	Mol. C		
ω_{0}		174.2(3)	-178.2(4)	176.5(5)	-167.1(7)	-168.0(5)
φ_{1}		-54.3(4)	-54.8(4)	-55.9(4)	-55.6(7)	-56.8(6)
ψ_{1}	13.9(3)	-43.8(4)	-45.0(4)	-47.3(4)	-48.5(8)	-33.6(6)
ω_{1}	173.7(2)	-178.0(3)	-177.0(4)	179.7(3)	-169.8(6)	-177.2(4)
φ_{2}	-66.3(4)	-91.5(4)	-98.5(4)	-95.1(4)	-55.3(9)	-51.2(6)
ψ_{2}	$150.2(2)^{a}$	$-44.5(4)^{c}$	$-48.7(5)^{e}$	$138.6(3)^{g}$	-36.5(9)	-36.4(6)
ω_{2}	$179.7(3)^{b}$	$178.1(6)^{d}$	$-178.0(6)^{f}$	$176.8(4){ }^{h}$	-172.7(6)	-175.1(4)
φ_{3}					-58.0(9)	-55.7(3)
ψ_{3}					-34.8(9)	-32.5(6)
ω_{3}					-173.8(6)	-177.2(4)
φ_{4}					-61.2(8)	-61.4(5)
ψ_{4}					-35.4(9)	-30.9(6)
ω_{4}					175.5(7)	177.3(4)
φ_{5}					47.2(10)	47.2(6)
ψ_{5}					46.0(9) ${ }^{i}$	50.3(5) ${ }^{i}$
					$175.4(9)^{j}$	$172.7(4)^{j}$
$\chi_{1}^{1,1}$	-62.9(3)	-60.5(4)	173.6(3)	-60.9(5)	-57.8(8)	
$\chi_{1}^{1,2}$	62.4(3)	173.1(3)	-59.7(4)	169.4(4)	176.8(7)	
$\chi_{2}^{1,1}$	61.6(4)	179.3(4)	-173.7(4)	-68.6(6)		
$\chi_{2}{ }^{1,2}$	-65.3(4)	-58.3(5)	-53.5(5)	170.0(6)		

${ }^{a}$ N2-C2A-C2-OT. ${ }^{b} \mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{OT}-\mathrm{CT} .{ }^{c} \mathrm{~N} 2-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{OTA} .{ }^{d} \mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{OTA}-\mathrm{CTA} .{ }^{e} \mathrm{~N} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{OTB} .{ }^{f} \mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{OTB}-\mathrm{CTB} .{ }^{g} \mathrm{~N} 6-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 6-$ OTC. ${ }^{h}$ C6A-C6-OTC-CTC. ${ }^{i}$ N5-C5A-C5-OT. ${ }^{j}$ C5A-C5-OT-CT.

Table 3 Intra- and intermolecular H-bond parameters for the four X-ray diffraction structures solved in this work

Compound	Donor D-H	Acceptor A	Symmetry operations of A	Distance/Å		Angle/deg D-H \cdots A
				D \cdots A	H \cdots A	
H-L-(α Me)Hyv-L-Val-OMe	N2-H2	O01	x, y, z	2.558(3)	2.15	109
	O01-H01	O1	$x+1, y, z$	2.771(3)	1.95	175
Ac-L-($\alpha \mathrm{Me}$) Hyv -L-Val-OMe	N2-H2	O5	$x+1, y, z+1$	$3.075(5)$	2.22	171
	N4-H4	O1	x, y, z	$2.999(4)$	2.16	166
	N6-H6	O3	x, y, z	2.979(4)	2.13	170
Ac-L-($\alpha \mathrm{Me}$) $\mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$	N3-H3	O0	x, y, z	3.147(9)	2.42	143
	N4-H4	O1	x, y, z	3.123(7)	2.35	150
	N5-H5	O2	x, y, z	3.083(8)	2.44	132
	N2-H2	O4	$x, y, z-1$	2.998(7)	2.32	136
$\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}$	N3-H3	O0	x, y, z	$3.029(5)$	2.22	156
	N4-H4	O1	x, y, z	2.987(5)	2.20	152
	N5-H5	O2	x, y, z	3.012(5)	2.28	144
	N1-H1	O4	$x-1 / 2,-y+1 / 2, z-1 / 2$	$2.817(5)$	1.97	168
	N2-H2	O5	$x-1 / 2,-y+1 / 2, z-1 / 2$	3.198(5)	2.44	147

Fig. 8 X-Ray diffraction structure of $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}$ with numbering of the atoms. The three intramolecular H-bonds are indicated by dashed lines.

All amide, peptide and ester groups of the four structures are trans (ω torsion angles) with no deviation $>7.3^{\circ}$ from planarity, except for the ω_{0} and ω_{1} torsion angles of Ac-L- $(\alpha \mathrm{Me}) \mathrm{Hyv}-$ (Aib) $4_{4}-\mathrm{OMe}$ and the ω_{0} torsion angle of $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}$, which
deviate from trans planarity by $10.2-12.9^{\circ}$. The methyl ester group adopts a conformation with respect to the C-terminal $\mathrm{CA}-\mathrm{N}$ bond between the antiperiplanar and anticlinal conformations for molecules \mathbf{A} and \mathbf{B} of $\mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-\mathrm{L}-\mathrm{Val}-$ $\mathrm{OMe}, \mathrm{Ac}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$ and $\mathrm{Ac}-(\mathrm{Aib})_{5}-\mathrm{OMe}$, but between the synperiplanar and synclinal conformations for H-L($\alpha \mathrm{Me}$)Hyv-L-Val-OMe and molecule \mathbf{C} of Ac-L- $(\alpha \mathrm{Me}) \mathrm{Hyv}-\mathrm{L}-$ Val-OMe. ${ }^{65}$ The L-($\left.\alpha \mathrm{Me}\right) \mathrm{Hyv}$ isopropyl side chain $\left(\chi_{1}{ }^{1,1}\right.$ and $\chi_{1}{ }^{1,2}$ torsion angles) is found in the t, g^{-}conformation in all structures except in H-L- $(\alpha \mathrm{Me}) \mathrm{Hyv}-\mathrm{L}-\mathrm{Val}-\mathrm{OMe}$ where it adopts the g^{+}, g^{-}conformation. The same conclusions apply for the L-Val isopropyl side chain ($\chi_{2}^{1,1}$ and $\chi_{2}^{1,2}$ torsion angles) of the didepsipeptide. ${ }^{66}$

The molecules of the O-unprotected didepsipeptide ester H-L-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe pack in the unit cell via intermolecular (alcohol) $\mathrm{O} 01-\mathrm{H} 01 \cdots \mathrm{O} 1=\mathrm{C} 1$ (peptide) H-bonds, forming rows in the a direction. The $\mathrm{O} \cdots \mathrm{O}$ distance is normal. ${ }^{67,68}$

The three molecules in the asymmetric unit of the fully blocked didepsipeptide Ac-l-($\alpha \mathrm{Me}$)Hyv-L-Val-OMe are linked together in the crystal through intermolecular H-bonds involving exclusively the peptide carbonyl groups as acceptors. More specifically, the three H-bonds, (molecule A peptide) $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 5=\mathrm{C} 5$ (molecule C peptide), (molecule B peptide)

N4-H4 \cdots O1=C1 (molecule A peptide), and (molecule \mathbf{C} peptide) N6-H6 \cdots O3=C3 (molecule B peptide) give rise to $\mathbf{B}-\mathbf{A}-\mathbf{C}-\mathbf{B}-\mathbf{A}-\mathbf{C}$ chains of molecules along the a, c direction.
The crystal packing mode for the pentadepsipeptide Ac-$\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}-(\mathrm{Aib})_{4}-\mathrm{OMe}$ is characterized by (peptide) $\mathrm{N} 2-$ $\mathrm{H} 2 \cdots \mathrm{O} 4=\mathrm{C} 4$ (peptide) intermolecular H -bonds, generating rows of molecules along the c direction. In the crystals of the related pentapeptide Ac -(Aib$)_{s}$-OMe two different types of intermolecular H-bonds link the molecules in a head-to-tail fashion along the a, c direction, a strong (amide) $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4=\mathrm{C} 4$ (peptide) H -bond and a weak (peptide) $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 5=\mathrm{C} 5$ (ester) H-bond. ${ }^{61-63}$

Conclusions

In this paper we have reported the stereospecific synthesis of the α-hydroxy acid $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ by a combined chemical and enzymatic approach. Due to the extremely poor reactivity of its hydroxy function, we successfully incorporated L-($\alpha \mathrm{Me}) \mathrm{Hyv}$ in an internal position of the peptide chain only by taking advantage of a recently proposed method for the acylation of sterically hindered tertiary alcohols which concomitantly exploits the Lewis acid scandium(III) triflate and the tertiary amine DMAP as catalysts. ${ }^{43,44}$ For the same reason, addition of $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ at the N-terminus of a peptide chain is particularly straightforward as this reaction does not even require O-protection.

In the X-ray diffraction structures of all four molecules of the two depsipeptides containing an O -acylated $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ residue that were solved in this work, this first chiral C^{α} tetrasubstituted α-hydroxy acid studied to date is right-handed helical (with average φ, ψ torsion angles $-55.1,-46.1^{\circ}$) as expected on the basis of the well known gem-dialkyl effect. ${ }^{69}$ This structural property, making it ideally suited for the stabilization of β-turn and $3_{10} / \alpha$-helices in depsipeptides, strictly reflects the published propensity of the parent Hib α-hydroxy acid. ${ }^{8,9}$ The conformational tendency of $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ also closely resembles that of the related chiral, C^{a}-tetrasubstituted α-amino acid $\mathrm{L}-(\alpha \mathrm{Me})$ Val. ${ }^{18-22}$ It is also worth noting that replacement with $\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Hyv}$ of a single residue in the intermolecular β-sheet forming sequence $-(\mathrm{L}-\mathrm{Val})_{4}$ - is sufficient to disrupt this ordered self-associated secondary structure. Taken together, these results support the view that the $\mathrm{L}-(\mathrm{\alpha Me}) \mathrm{Hyv}$ residue represents an additional valuable tool for the design and synthesis of conformationally constrained, folded depsipeptides.

References

1 Ch. M. Krell and D. Seebach, Eur. J. Org. Chem., 2000, 1207.
2 D. Seebach and M. G. Fritz, Int. J. Biol. Macromol., 1999, 25, 217.

3 C. Aleman, B. Lotz and J. Puiggali, Macromolecules, 2001, 34, 4795.
4 M. Dobler, in Ionophores and Their Structures, Wiley, New York, 1981.

5 V. T. Ivanov and I. I. Mikhaleva, in Houben-Weyl, Science of Synthesis, 2002, Vol. E22c; in the press.
6 G. Boussard, M. Marraud, J. Néel, B. Maigret and A. Aubry, Biopolymers, 1977, 16, 1033.
7 T. Ohyama, H. Oku, A. Hiroki, Y. Malekawa, M. Yoshida and R. Katakai, Biopolymers, 2000, 54, 375.

8 M. Crisma, G. Valle, G. M. Bonora, C. Toniolo and G. Cavicchioni, Int. J. Pept. Protein Res., 1993, 41, 553.
9 G. Valle, R. Bardi, A. M. Piazzesi, M. Crisma, C. Toniolo, G. Cavicchioni, K. Uma and P. Balaram, Biopolymers, 1991, 31, 1669.
10 T. Kato, H. Mizuno, S. Lee, H. Aoyagi, H. Kodama, N. Go and T. Kato, Int. J. Pept. Protein Res., 1992, 39, 485.

11 M. Goodman, Y. V. Venkatachalapathi, S. Mammi and R. Katakai, J. Biosci., 1985, 8, 223.

12 O. Arad and M. Goodman, Biopolymers, 1990, 29, 1651.
13 M. Baca and S. B. Kent, Tetrahedron, 2000, 56, 9503.
14 G. S. Beligere and Ph. E. Dawson, J. Am. Chem. Soc., 2000, 122, 12079.

15 J. T. Koh, V. W. Cornish and P. G. Schultz, Biochemistry, 1997, 36, 11314.

16 P. M. England, H. A. Lester and D. A. Dougherty, Biochemistry, 1999, 38, 14409.
17 C. Toniolo and E. Benedetti, Macromolecules, 1991, 24, 4004.
18 C. Toniolo, M. Crisma, F. Formaggio, G. Valle, G. Cavicchioni, G. Précigoux, A. Aubry and J. Kamphuis, Biopolymers, 1993, 33, 1061.

19 G. Valle, M. Crisma, C. Toniolo, S. Polinelli, W. H. J. Boesten, H. E. Schoemaker, E. M. Meijer and J. Kamphuis, Int. J. Pept. Protein Res., 1991, 37, 521.
20 C. Toniolo, M. Crisma, G. M. Bonora, B. Klajc, F. Lelj, P. Grimaldi, A. Rosa, S. Polinelli, W. H. J. Boesten, E. M. Meijer, H. E. Schoemaker and J. Kamphuis, Int. J. Pept. Protein Res., 1991, 38, 242.

21 F. Formaggio, M. Pantano, G. Valle, M. Crisma, G. M. Bonora, S. Mammi, E. Peggion, C. Toniolo, W. H. J. Boesten, H. E. Schoemaker and J. Kamphuis, Macromolecules, 1993, 26, 1848.
22 A. Polese, F. Formaggio, M. Crisma, G. Valle, C. Toniolo, G. M. Bonora, Q. B. Broxterman and J. Kamphuis, Chem. Eur. J., 1996, 2, 1104.

23 C. M. Venkatachalam, Biopolymers, 1968, 6, 1425.
24 C. Toniolo, CRC Crit. Rev. Biochem., 1980, 9, 1.
25 G. D. Rose, L. M. Gierasch and J. A. Smith, Adv. Protein Chem., 1985, 37, 1.
26 C. Toniolo and E. Benedetti, Trends Biochem. Sci., 1991, 16, 350.
27 A. Polese, S. Mondini, A. Bianco, C. Toniolo, G. Scorrano, D. M. Guldi and M. Maggini, J. Am. Chem. Soc., 1999, 121, 3446.
28 A. Bianco, F. Gasparrini, M. Maggini, D. Misiti, A. Polese, M. Prato, G. Scorrano, C. Toniolo and C. Villani, J. Am. Chem. Soc., 1997, 119, 7550.
29 C. Sissi, P. Rossi, F. Felluga, F. Formaggio, M. Palumbo, P. Tecilla, C. Toniolo and P. Scrimin, J. Am. Chem. Soc., 2001, 123, 3169.

30 K. Mori, T. Ebata and S. Takechi, Tetrahedron, 1984, 40, 1761.
31 F. Effenberger, B. Hörsch, F. Weingart, T. Ziegler and S. Kühner, Tetrahedron Lett., 1991, 32, 2605.
32 H. Griengl, N. Klempier, P. Pöchlauer, M. Schmidt, N. Shi and A. A. Zabelinskaja-Mackova, Tetrahedron, 1998, 54, 14477.

33 G. M. Sheldrick, SHELXS 97. Program for Crystal Structure Determination, University of Göttingen, Germany, 1997.
34 G. M. Sheldrick, SHELXL 97. Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
35 H. Schwarz, F. M. Bumpus and I. H. Page, J. Am. Chem. Soc., 1957, 79, 5697.
36 R. A. Boissonnas, S. Guttmann, R. L. Huguenin, P. A. Jaquenoaud and E. Sandrin, Helv. Chim. Acta, 1958, 41, 1867.
37 W. König and R. Geiger, Chem. Ber., 1970, 103, 788.
38 C. Toniolo, G. M. Bonora, F. Formaggio, M. Crisma, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone and C. Pedone, Gazz. Chim. Ital., 1988, 118, 47.
39 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397.
40 E. F. V. Scriven, Chem. Soc. Rev., 1983, 12, 129.
41 L. A. Carpino, E. S. M. E. Mansour and D. Sadat-Aalaee, J. Org. Chem., 1991, 56, 2611.
42 G. W. Anderson and A. C. McGregor, J. Am. Chem. Soc., 1957, 79, 6180.

43 H. Zhao, A. Pendri and R. B. Greenwald, J. Org. Chem., 1998, 63, 7559.

44 M. Lee and D. H. Kim, Bioorg. Med. Chem., 2000, 8, 815.
45 L. S. Lin, T. Lanza, Jr., S. E. de Laszlo, Q. Truong, T. Kamenecka and W. K. Hagmann, Tetrahedron Lett., 2000, 41, 7013.
46 G. M. Bonora, C. Mapelli, C. Toniolo, R. R. Wilkening and E. S. Stevens, Int. J. Biol. Macromol., 1984, 6, 179.
47 M. T. Cung, M. Marraud and J. Néel, Ann. Chim. (Paris), 1972, 7, 183.

48 C. Toniolo, M. Pantano, F. Formaggio, M. Crisma, G. M. Bonora, A. Aubry, D. Bayeul, A. Dautant, W. H. J. Boesten, H. E. Schoemaker and J. Kamphuis, Int. J. Biol. Macromol., 1994, 16, 7.
49 C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone and C. Pedone, Macromolecules, 1985, 18, 895.
50 K. D. Kopple, M. Ohnishi and A. Go, Biochemistry, 1969, 8, 4087.
51 D. Martin and G. Hauthal, in Dimethyl Sulphoxide, Van NostrandReinhold, Wokingham, UK, 1975.
52 IUPAC-IUB Commission on Biochemical Nomenclature, Biochemistry, 1970, 9, 3471.
53 N. Shamala, R. Nagaraj and P. Balaram, J. Chem. Soc., Chem. Соттип., 1978, 996.
54 E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, M. Crisma, G. M. Bonora and C. Toniolo, J. Am. Chem. Soc., 1982, 104, 2437.
55 W. B. Schweizer and J. D. Dunitz, Helv. Chim. Acta, 1982, 65, 1547.

56 P. Chakrabarti and J. D. Dunitz, Helv. Chim. Acta, 1982, 65, 1555.

57 E. Benedetti, in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, ed. B. Weinstein, Dekker, New York, 1982, vol. 6, p. 105.
58 T. Ashida, Y. Tsunogae, I. Tanaka and T. Yamane, Acta Crystallogr., Sect. B, 1987, 43, 212.
59 Y. Paterson, S. M. Ramsey, E. Benedetti, G. Némethy and H. A. Scheraga, J. Am. Chem. Soc., 1981, 103, 2947.
60 G. Valle, M. Crisma, F. Formaggio, C. Toniolo and G. Jung, Liebigs Ann. Chem., 1987, 1055.
61 C. Ramakrishnan and N. Prasad, Int. J. Protein Res., 1971, 3, 209.

62 R. Taylor, O. Kennard and W. Versichel, Acta Crystallogr., Sect. B, 1984, 40, 280.

63 C. H. Görbitz, Acta Crystallogr., Sect. B, 1989, 45, 390.
64 C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone and C. Pedone, Biopolymers, 1983, 22, 205.

65 J. D. Dunitz and P. Strickler, in Structural Chemistry and Molecular Biology, eds. A. Rich and N. Davidson, Freeman, San Francisco, 1968, p. 595.
66 E. Benedetti, G. Morelli, G. Némethy and H. A. Scheraga, Int. J. Pept. Protein Res., 1983, 22, 1.
67 J. Mitra and C. Ramakrishnan, Int. J. Pept. Protein Res., 1977, 9, 27.
68 I. D. Brown, Acta Crystallogr., Sect. A, 1976, 32, 24.
69 R. M. Beesley, C. K. Ingold and J. F. Thorpe, J. Chem. Soc., 1915, 105, 1080.

[^0]: \dagger Electronic supplementary information (ESI) available: analytical data. See http://www.rsc.org/suppdata/p2/b1/b107691b/

